We give a new presentation of the main result of Arunachalam, Bri\"et and Palazuelos (SICOMP'19) and show that quantum query algorithms are characterized by a new class of polynomials which we call Fourier completely bounded polynomials. We conjecture that all such polynomials have an influential variable. This conjecture is weaker than the famous Aaronson-Ambainis (AA) conjecture (Theory of Computing'14), but has the same implications for classical simulation of quantum query algorithms. We prove a new case of the AA conjecture by showing that it holds for homogeneous Fourier completely bounded polynomials. This implies that if the output of $d$-query quantum algorithm is a homogeneous polynomial $p$ of degree $2d$, then it has a variable with influence at least $Var[p]^2$. In addition, we give an alternative proof of the results of Bansal, Sinha and de Wolf (CCC'22 and QIP'23) showing that block-multilinear completely bounded polynomials have influential variables. Our proof is simpler, obtains better constants and does not use randomness.
翻译:傅里叶完全有界多项式的影响与量子算法的经典模拟
翻译后的摘要:
我们给出了Arunachalam、Bri\"et和Palazuelos(SICOMP'19)的主要结果的新演示,并展示量子查询算法由一类新型多项式,称为傅里叶完全有界多项式所表征。我们猜测所有这样的多项式都具有一个有影响的变量。这个猜想比著名的Aaronson-Ambainis(AA)猜想(Theory of Computing'14)要弱,但对量子查询算法的经典模拟具有相同的影响。我们通过证明对于齐次傅里叶完全有界多项式它成立来证明了AA猜想的一个新的案例。这意味着,如果d次查询的量子算法的输出是一个2d次的齐次多项式p,则它至少有一个影响力不小于$Var[p]^2$的变量。此外,我们给出了Bansal,Sinha和de Wolf(CCC'22 and QIP'23)的结果的替代证明,即分块多重完全有界多项式具有有影响的变量。我们的证明更简单,得到更好的常数,并且不使用随机性。