It is well known that the traditional Jensen inequality is proved by lower bounding the given convex function, $f(x)$, by the tangential affine function that passes through the point $(E\{X\},f(E\{X\}))$, where $E\{X\}$ is the expectation of the random variable $X$. While this tangential affine function yields the tightest lower bound among all lower bounds induced by affine functions that are tangential to $f$, it turns out that when the function $f$ is just part of a more complicated expression whose expectation is to be bounded, the tightest lower bound might belong to a tangential affine function that passes through a point different than $(E\{X\},f(E\{X\}))$. In this paper, we take advantage of this observation, by optimizing the point of tangency with regard to the specific given expression, in a variety of cases, and thereby derive several families of inequalities, henceforth referred to as ``Jensen-like'' inequalities, which are new to the best knowledge of the author. The degree of tightness and the potential usefulness of these inequalities is demonstrated in several application examples related to information theory.


翻译:已知传统的Jensen不等式通过将凸函数 $f(x)$ 下界限制在过点 $(E\{X\},f(E\{X\}))$ 的切线函数上来证明,其中$E\{X\}$是随机变量$X$的期望。虽然这条切线函数是所有切于 $f$ 的切线函数中最紧的下界,但是当函数 $f$ 只是一组更复杂表达式的一部分时,最紧的下界可能属于一个沿着$x$轴上一点不同于$(E\{X\},f(E\{X\}))$的切线函数。在本文中,我们利用这一观察结果,在多种情况下通过优化切点来导出一些不等式,称为“类Jensen不等式”,这对作者来说是全新的。这些不等式的紧密程度和潜在的实用性在几个与信息论相关的应用示例中得到了证明。

0
下载
关闭预览

相关内容

【干货书】工程和科学中的概率和统计,
专知会员服务
58+阅读 · 2022年12月24日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月22日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
0+阅读 · 2023年5月18日
Arxiv
65+阅读 · 2021年6月18日
VIP会员
相关VIP内容
【干货书】工程和科学中的概率和统计,
专知会员服务
58+阅读 · 2022年12月24日
【硬核书】矩阵代数基础,248页pdf
专知会员服务
86+阅读 · 2021年12月9日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
51+阅读 · 2020年12月14日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
3+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员