Hierarchical agglomerative clustering (HAC) is a popular algorithm for clustering data, but despite its importance, no dynamic algorithms for HAC with good theoretical guarantees exist. In this paper, we study dynamic HAC on edge-weighted graphs. As single-linkage HAC reduces to computing a minimum spanning forest (MSF), our first result is a parallel batch-dynamic algorithm for maintaining MSFs. On a batch of $k$ edge insertions or deletions, our batch-dynamic MSF algorithm runs in $O(k\log^6 n)$ expected amortized work and $O(\log^4 n)$ span with high probability. It is the first fully dynamic MSF algorithm handling batches of edge updates with polylogarithmic work per update and polylogarithmic span. Using our MSF algorithm, we obtain a parallel batch-dynamic algorithm that can answer queries about single-linkage graph HAC clusters. Our second result is that dynamic graph HAC is significantly harder for other common linkage functions. For example, assuming the strong exponential time hypothesis, dynamic graph HAC requires $\Omega(n^{1-o(1)})$ work per update or query on a graph with $n$ vertices for complete linkage, weighted average linkage, and average linkage. For complete linkage and weighted average linkage, the bound still holds even for incremental or decremental algorithms and even if we allow $\operatorname{poly}(n)$-approximation. For average linkage, the bound weakens to $\Omega(n^{1/2 - o(1)})$ for incremental and decremental algorithms, and the bounds still hold when allowing $n^{o(1)}$-approximation.
翻译:高级分类聚合群( HAC) 是组群数据的流行算法, 但尽管其重要性很重要, 但HAC 不存在具有良好理论保障的动态算法。 在本文中, 我们研究边缘加权图形中的动态 HAC 。 由于单一链接的HAC 降低到计算最小的横贯森林( MSF), 我们的第一个结果是一个平行的批量动态算法, 用于维护 MSF 。 在一组美元边缘插入或删除中, 我们的批量动态 MSF 算法运行在 $( k\log6 n) 的预期摊销工作以及 $( log_ 4 n) 约束范围中的可能性很高的 $( log_ 4 n) 。 这是第一个完全动态的 MSF 算法, 在每次更新多logallogarth 工作以及多logaltracilation 时, 我们获得一个平行的批量动算算算算算算法, 对于其它共同连接功能来说, 动态的图表 HAC 仍然要大大地 美元 递增 。 例如假设强烈的指数时间假设, HAC 数字 和 平均链接需要 美元 或平均链接 。