Various defense models have been proposed to resist adversarial attack algorithms, but existing adversarial robustness evaluation methods always overestimate the adversarial robustness of these models (i.e., not approaching the lower bound of robustness). To solve this problem, this paper uses the proposed decouple space method to divide the classifier into two parts: non-linear and linear. Then, this paper defines the representation vector of the original example (and its space, i.e., the representation space) and uses the iterative optimization of Absolute Classification Boundaries Initialization (ACBI) to obtain a better attack starting point. Particularly, this paper applies ACBI to nearly 50 widely-used defense models (including 8 architectures). Experimental results show that ACBI achieves lower robust accuracy in all cases.
翻译:为了抵制对抗性攻击算法,提出了各种防御模型,但现有的对抗性强力评价方法总是高估了这些模型的对抗性强力(即没有接近较弱的强力约束 ) 。 为解决这一问题,本文件使用拟议的拆分空间方法将分类器分为两个部分:非线性和线性。 然后,本文件界定了原始示例的表示矢量(及其空间,即代表空间),并使用绝对分类边界初始化的迭接优化(ACBI)来获得更好的攻击性起点。 特别是,本文将ACBI应用于近50种广泛使用的防御模型(包括8个结构 ) 。 实验结果表明,ACBI在所有案例中都实现了较弱的稳性精确度。