Humans are excellent at perceiving illusory outlines. We are readily able to complete contours, shapes, scenes, and even unseen objects when provided with images that contain broken fragments of a connected appearance. In vision science, this ability is largely explained by perceptual grouping: a foundational set of processes in human vision that describes how separated elements can be grouped. In this paper, we revisit an algorithm called Stochastic Completion Fields (SCFs) that mechanizes a set of such processes -- good continuity, closure, and proximity -- through contour completion. This paper implements a modernized model of the SCF algorithm, and uses it in an image editing framework where we propose novel methods to complete fragmented contours. We show how the SCF algorithm plausibly mimics results in human perception. We use the SCF completed contours as guides for inpainting, and show that our guides improve the performance of state-of-the-art models. Additionally, we show that the SCF aids in finding edges in high-noise environments. Overall, our described algorithms resemble an important mechanism in the human visual system, and offer a novel framework that modern computer vision models can benefit from.


翻译:人类在感知幻觉的轮廓方面非常出色。 我们很容易能够完成轮廓、形状、场景,甚至看不见的物体。 当提供含有相连接外观断裂片段的图像时, 我们很容易完成轮廓、 形状、 场景, 甚至看不见的物体。 在视觉科学中, 这种能力主要通过感知组合来解释: 人类视觉中的一套基本过程, 描述分离元素是如何组合的。 在本文中, 我们重新审视了一种算法, 叫做Stochatic 补全场( SCFs), 通过等式补全, 使一系列这样的过程 -- -- 良好的连续性、 关闭和接近 -- 机械化。 本文采用了一个现代化的 SCF 算法模型, 并在一个图像编辑框架中使用它, 我们所描述的SCF 算法, 是如何将人类感知到的。 我们用SCFCs 算法作为绘画的指南, 并显示我们的指南可以改善状态模型的性能。 此外, 我们展示SCF帮助在高清环境中找到边缘。 。 总之, 我们描述的计算机算法就像一个重要机制。

0
下载
关闭预览

相关内容

最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
4+阅读 · 2019年8月7日
Pluralistic Image Completion
Arxiv
8+阅读 · 2019年3月11日
Foreground-aware Image Inpainting
Arxiv
4+阅读 · 2019年1月17日
Arxiv
6+阅读 · 2018年5月22日
Arxiv
4+阅读 · 2018年3月30日
VIP会员
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员