The widespread distribution of microplastics (MPs) in the environment presents significant challenges for their detection and identification. Fluorescence imaging has emerged as a promising technique for enhancing plastic particle detectability and enabling accurate classification based on fluorescence behavior. However, conventional segmentation techniques face limitations, including poor signal-to-noise ratio, inconsistent illumination, thresholding difficulties, and false positives from natural organic matter (NOM). To address these challenges, this study introduces the Fluorescence Imaging Microplastic Analysis Platform (FIMAP), a retrofitted multispectral camera with four optical filters and five excitation wavelengths. FIMAP enables comprehensive characterization of the fluorescence behavior of ten Nile Red-stained MPs: HDPE, LDPE, PP, PS, EPS, ABS, PVC, PC, PET, and PA, while effectively excluding NOM. Using K-means clustering for robust segmentation (Intersection over Union = 0.877) and a 20-dimensional color coordinate multivariate nearest neighbor approach for MP classification (>3.14 mm), FIMAP achieves 90% precision, 90% accuracy, 100% recall, and an F1 score of 94.7%. Only PS was occasionally misclassified as EPS. For smaller MPs (35-104 microns), classification accuracy declined, likely due to reduced stain sorption, fewer detectable pixels, and camera instability. Integrating FIMAP with higher-magnification instruments, such as a microscope, may enhance MP identification. This study presents FIMAP as an automated, high-throughput framework for detecting and classifying MPs across large environmental sample volumes.
翻译:暂无翻译