We present EgoNeRF, a practical solution to reconstruct large-scale real-world environments for VR assets. Given a few seconds of casually captured 360 video, EgoNeRF can efficiently build neural radiance fields which enable high-quality rendering from novel viewpoints. Motivated by the recent acceleration of NeRF using feature grids, we adopt spherical coordinate instead of conventional Cartesian coordinate. Cartesian feature grid is inefficient to represent large-scale unbounded scenes because it has a spatially uniform resolution, regardless of distance from viewers. The spherical parameterization better aligns with the rays of egocentric images, and yet enables factorization for performance enhancement. However, the na\"ive spherical grid suffers from irregularities at two poles, and also cannot represent unbounded scenes. To avoid singularities near poles, we combine two balanced grids, which results in a quasi-uniform angular grid. We also partition the radial grid exponentially and place an environment map at infinity to represent unbounded scenes. Furthermore, with our resampling technique for grid-based methods, we can increase the number of valid samples to train NeRF volume. We extensively evaluate our method in our newly introduced synthetic and real-world egocentric 360 video datasets, and it consistently achieves state-of-the-art performance.


翻译:我们提出了EgoNeRF,这是一种实际解决方案,用于重建大规模实际环境以用于VR资产。给定几秒钟的随意捕捉的360视频,EgoNeRF可以高效地构建神经辐射场,从新的视角实现高质量的渲染。受最近NeRF使用特征网格的加速的启发,我们采用了球面坐标而不是传统的笛卡尔坐标。笛卡尔特征格在表示大规模无界场景方面效率低下,因为其具有空间均匀分辨率,而不考虑与观察者的距离。球面参数化更好地与自我中心图像的光线对齐,但同时能够进行因子分解以提高性能。但是,朴素的球面网格在两个极点附近存在不规则性,并且无法表示无界的场景。为了避免极点附近的奇异性,我们结合了两个平衡网格,从而得到准均匀的角度网格。我们还按指数对放射线网格进行分区,并将环境图放在无限远处以表示无界场景。此外,通过我们的基于网格的方法重新采样技术,可以增加训练NeRF体积的有效样本数量。我们在我们新引入的合成和实际的自我中心360视频数据集中进行了广泛的评估,并且在一致性方面实现了最先进的性能。

0
下载
关闭预览

相关内容

【NeurIPS2021】去栅格化的矢量图识别
专知会员服务
14+阅读 · 2021年11月18日
专知会员服务
61+阅读 · 2020年3月4日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Learning Implicit Fields for Generative Shape Modeling
Arxiv
10+阅读 · 2018年12月6日
VIP会员
相关VIP内容
【NeurIPS2021】去栅格化的矢量图识别
专知会员服务
14+阅读 · 2021年11月18日
专知会员服务
61+阅读 · 2020年3月4日
【论文推荐】小样本视频合成,Few-shot Video-to-Video Synthesis
专知会员服务
23+阅读 · 2019年12月15日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员