We propose a novel Model Order Reduction framework that is able to handle solutions of hyperbolic problems characterized by multiple travelling discontinuities. By means of an optimization based approach, we introduce suitable calibration maps that allow us to transform the original solution manifold into a lower dimensional one. The novelty of the methodology is represented by the fact that the optimization process does not require the knowledge of the discontinuities location. The optimization can be carried out simply by choosing some reference control points, thus avoiding the use of some implicit shock tracking techniques, which would translate into an increased computational effort during the offline phase. In the online phase, we rely on a non-intrusive approach, where the coefficients of the projection of the reduced order solution onto the reduced space are recovered by means of an Artificial Neural Network. To validate the methodology, we present numerical results for the 1D Sod shock tube problem, for the 2D double Mach reflection problem, also in the parametric case, and for the triple point problem.
翻译:暂无翻译