Recent graph neural networks (GNN) has achieved remarkable performance in node representation learning. One key factor of GNN's success is the \emph{smoothness} property on node representations. Despite this, most GNN models are fragile to the perturbations on graph inputs and could learn unreliable node representations. In this paper, we study how to learn node representations against perturbations in GNN. Specifically, we consider that a node representation should remain stable under slight perturbations on the input, and node representations from different structures should be identifiable, which two are termed as the \emph{stability} and \emph{identifiability} on node representations, respectively. To this end, we propose a novel model called Stability-Identifiability GNN Against Perturbations (SIGNNAP) that learns reliable node representations in an unsupervised manner. SIGNNAP formalizes the \emph{stability} and \emph{identifiability} by a contrastive objective and preserves the \emph{smoothness} with existing GNN backbones. The proposed method is a generic framework that can be equipped with many other backbone models (e.g. GCN, GraphSage and GAT). Extensive experiments on six benchmarks under both transductive and inductive learning setups of node classification demonstrate the effectiveness of our method. Codes and data are available online:~\url{https://github.com/xuChenSJTU/SIGNNAP-master-online}


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
54+阅读 · 2020年11月3日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年6月20日
Arxiv
31+阅读 · 2020年9月21日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
38+阅读 · 2020年3月10日
VIP会员
相关VIP内容
专知会员服务
54+阅读 · 2020年11月3日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员