In this paper, we propose a new Deep Neural Network (DNN) testing algorithm called the Constrained Gradient Descent (CGD) method, and an implementation we call CGDTest aimed at exposing security and robustness issues such as adversarial robustness and bias in DNNs. Our CGD algorithm is a gradient-descent (GD) method, with the twist that the user can also specify logical properties that characterize the kinds of inputs that the user may want. This functionality sets CGDTest apart from other similar DNN testing tools since it allows users to specify logical constraints to test DNNs not only for $\ell_p$ ball-based adversarial robustness but, more importantly, includes richer properties such as disguised and flow adversarial constraints, as well as adversarial robustness in the NLP domain. We showcase the utility and power of CGDTest via extensive experimentation in the context of vision and NLP domains, comparing against 32 state-of-the-art methods over these diverse domains. Our results indicate that CGDTest outperforms state-of-the-art testing tools for $\ell_p$ ball-based adversarial robustness, and is significantly superior in testing for other adversarial robustness, with improvements in PAR2 scores of over 1500% in some cases over the next best tool. Our evaluation shows that our CGD method outperforms competing methods we compared against in terms of expressibility (i.e., a rich constraint language and concomitant tool support to express a wide variety of properties), scalability (i.e., can be applied to very large real-world models with up to 138 million parameters), and generality (i.e., can be used to test a plethora of model architectures).
翻译:在本文中,我们提出了一种名为约束梯度下降(CGD)的新型深度神经网络(DNN)测试算法,并实现了一个名为CGDTest的工具,旨在暴露DNN中的安全性和鲁棒性问题,例如对抗性鲁棒性和偏差问题。我们的CGD算法是一种梯度下降(GD)方法,不同之处在于用户还可以指定逻辑属性,以表征用户可能需要的输入类型。这个功能使CGDTest与其他类似的DNN测试工具不同,因为它允许用户指定逻辑约束,从而不仅可以测试DNN的$\ell_p$球形对抗鲁棒性,而且可以包括更丰富的属性,例如伪装和流对抗性约束,以及NLP领域的对抗性鲁棒性。我们通过在视觉和NLP领域进行广泛的实验来展示CGDTest的实用性和功效,在这些不同的领域中与32种最先进的方法进行比较。我们的研究结果表明,CGDTest在$\ell_p$球形对抗鲁棒性方面优于最先进的测试工具,并且在测试其他对抗鲁棒性方面显著优于其他测试工具,在某些情况下PAR2得分的提高超过了比其更好的工具的1500%。我们的评估表明,我们的CGD方法在表达能力(即,丰富的约束语言和伴随的工具支持,以表达多种属性)、可扩展性(即,可以应用于具有最多1.38亿个参数的大型实际模型)和普遍性(即,可以用于测试各种模型架构)方面优于竞争方法。