The proliferation of automated conversational systems such as chatbots, spoken-dialogue systems, and smart speakers, has significantly impacted modern digital life. However, these systems are primarily designed to provide answers to well-defined questions rather than to support users in exploring complex, ill-defined questions. In this paper, we aim to push the boundaries of conversational systems by examining the types of nebulous, open-ended questions that can best be answered through conversation. We first sampled 500 questions from one million open-ended requests posted on AskReddit, and then recruited online crowd workers to answer eight inquiries about these questions. We also performed open coding to categorize the questions into 27 different domains. We found that the issues people believe require conversation to resolve satisfactorily are highly social and personal. Our work provides insights into how future research could be geared to align with users' needs.


翻译:自动对话系统(如聊天机器人、口语对话系统和智能音箱)的普及,显著影响了现代数字生活。然而,这些系统主要设计用于回答明确定义的问题,而不是支持用户探索复杂的、未定义的问题。本文旨在通过研究可以最好通过对话回答的模糊、开放性问题的类型来推动对话系统的界限。我们首先从一百万个 AskReddit 的开放性请求中抽取了 500 个问题,然后招募了在线众包工作者回答这些问题的八个调查。我们还进行开放性编码,将问题分类到 27 个不同的领域。我们发现,人们认为需要对话才能令人满意地解决的问题非常社会化和个人化。我们的研究为未来的研究提供了洞察,以与用户的需求相一致。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
KBQA: 基于开放域知识库上的QA系统 | 每周一起读
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月16日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关VIP内容
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
29+阅读 · 2019年10月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
KBQA: 基于开放域知识库上的QA系统 | 每周一起读
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员