项目名称: 基于矩阵分解和人机互动的网络社团结构探测问题研究
项目编号: No.61203295
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 自动化学科
项目作者: 张忠元
作者单位: 中央财经大学
项目金额: 24万元
中文摘要: 复杂网络中的社团结构探测对于理解网络的拓扑结构和功能有重要意义, 已经成为数据挖掘领域中无监督学习的一个重要问题. 本项目运用非负矩阵分解模型, 字典学习, 人机互动以及数据挖掘中相关的背景知识, 重点研究该领域中的两个问题:1. 针对不同类型的网络社团结构设计相应的非负矩阵分解模型, 使用高效稳健的字典学习算法, 以期提高社团结构探测结果的精度. 本问题的挑战在于能否将不同类型的社团结构恰当分类, 结果是否有较好的可解释性, 能否建立统一的矩阵分解框架; 2. 鉴于网络社团结构探测问题本身的特点, 难以给出明确的定义, 我们建立人机互动的网络社团结构探测模型, 将分析者拥有的背景信息时时地反馈给矩阵分解模型, 提高模型的可解释性, 为社团结构探测问题提供了新视角, 具有经典的矩阵分解模型, 模糊聚类模型和半监督模型所不具备的特点和优势.
中文关键词: 社团结构探测;半监督学习;无监督学习;二值矩阵分解;非负矩阵分解
英文摘要: Discovering community structures is a fundamental problem towards understanding the topology and the function of complex networks, such as social networks and biological networks. It has become a hot research topic in unsupervised learning community. In this project, we use non-negative matrix factorization, dictionary learning algorithms, human-model interaction and the relevant background knowledge in data mining to mainly study the following problems: 1. how to design the matrix decomposition models for detecting different types of community structures in order to improve the detection performance. Here the challenges are: i) whether we can appropriately divide the community structures into different categories to enhance the results, ii) whether we can propose a unified matrix decomposition framework for community structure detection; 2. there is still no standard and clear definition of community structures; can we design a user-computer interactive model to incorporate feedbacks from users in order to enhance the interpretability of the results? It will give new insights to the community discovery problem and improve standard matrix decomposition models, fuzzy clustering models and semi-supervised clustering models.
英文关键词: community detection;semi-supervised learning;unsupervised learning;binary matrix factorization;nonnegative matrix factorization