Random fields are mathematical structures used to model the spatial interaction of random variables along time, with applications ranging from statistical physics and thermodynamics to system's biology and the simulation of complex systems. Despite being studied since the 19th century, little is known about how the dynamics of random fields are related to the geometric properties of their parametric spaces. For example, how can we quantify the similarity between two random fields operating in different regimes using an intrinsic measure? In this paper, we propose a numerical method for the computation of geodesic distances in Gaussian random field manifolds. First, we derive the metric tensor of the underlying parametric space (the 3 x 3 first-order Fisher information matrix), then we derive the 27 Christoffel symbols required in the definition of the system of non-linear differential equations whose solution is a geodesic curve starting at the initial conditions. The fourth-order Runge-Kutta method is applied to numerically solve the non-linear system through an iterative approach. The obtained results show that the proposed method can estimate the geodesic distances for several different initial conditions. Besides, the results reveal an interesting pattern: in several cases, the geodesic curve obtained by reversing the system of differential equations in time does not match the original curve, suggesting the existence of irreversible geometric deformations in the trajectory of a moving reference traveling along a geodesic curve.
翻译:随机字段是用于模拟随机变量空间互动的数学结构, 其应用范围从统计物理和热力学到系统生物学和复杂系统的模拟。 尽管自19世纪以来一直在研究, 随机字段的动态与其参数空间的几何特性如何相关, 却鲜为人知。 例如, 我们如何量化在不同系统中使用内在测量法运行的两个随机字段之间的相似性? 在本文中, 我们提出一个数字方法, 用于计算高斯随机场数的大地测量距离。 首先, 我们得出了基础参数空间的度量( 3 x 3 第一阶的Fisher信息矩阵), 然后我们得出了非线性差异方形系统定义中所需的27个基督offel 符号, 其解决方案是从初始条件开始的地貌曲线。 龙格- 库塔第四阶线方法用于通过迭接方法以数字方式解决非线性系统。 所获得的结果显示, 拟议的方法可以估计若干初始参照条件的地标空间( 3 x 3 3 3 3 3- fir- first- fish frofrofrofrofrial frifrifor mass gradeform) 。 此外st comm comm 。 此外ew 中, 结果显示一个有趣的模型的原地球变化曲线结构的模型的模型的轨迹图的模型的形成。