We prove that the second moment of the number of critical points of any sufficiently regular random field, for example with almost surely $ C^3 $ sample paths, defined over a compact Whitney stratified manifold is finite. Our results hold without the assumption of stationarity - which has traditionally been assumed in other work. Under stationarity we demonstrate that our imposed conditions imply the generalized Geman condition of Estrade 2016.
翻译:我们证明,任何足够正常的随机字段的临界点数目的第二个时刻是有限的,例如几乎肯定有3美元的样本路径,它由惠特尼链条块块块块块的紧凑体块来定义。 我们的结果没有假定固定性 — — 传统上在其他工作中是假定的。 在静止状态下,我们证明我们强加的条件意味着2016年Estrade的通用Geman条件。