Gaussian processes and random fields have a long history, covering multiple approaches to representing spatial and spatio-temporal dependence structures, such as covariance functions, spectral representations, reproducing kernel Hilbert spaces, and graph based models. This article describes how the stochastic partial differential equation approach to generalising Mat\'ern covariance models via Hilbert space projections connects with several of these approaches, with each connection being useful in different situations. In addition to an overview of the main ideas, some important extensions, theory, applications, and other recent developments are discussed. The methods include both Markovian and non-Markovian models, non-Gaussian random fields, non-stationary fields and space-time fields on arbitrary manifolds, and practical computational considerations.
翻译:Gausian 进程和随机字段具有悠久的历史,涵盖代表空间和时空依赖结构的多种方法,如共变量功能、光谱表达、复制核心Hilbert空间和基于图形的模型。本文章描述了通过Hilbert空间预测对概括Mat\'ern 共变量模型的随机偏差方程方法如何与其中几种方法相联,其中每种关联在不同情况下都是有用的。除了概述主要想法外,还讨论了一些重要的扩展、理论、应用和其他最新动态。方法包括Markovian 和非 Markovian 模型、 非Gaussian 随机字段、非静止场和任意多功能的时空场以及实际的计算考虑。