Deblurring can not only provide visually more pleasant pictures and make photography more convenient, but also can improve the performance of objection detection as well as tracking. However, removing dynamic scene blur from images is a non-trivial task as it is difficult to model the non-uniform blur mathematically. Several methods first use single or multiple images to estimate optical flow (which is treated as an approximation of blur kernels) and then adopt non-blind deblurring algorithms to reconstruct the sharp images. However, these methods cannot be trained in an end-to-end manner and are usually computationally expensive. In this paper, we explore optical flow to remove dynamic scene blur by using the multi-scale spatially variant recurrent neural network (RNN). We utilize FlowNets to estimate optical flow from two consecutive images in different scales. The estimated optical flow provides the RNN weights in different scales so that the weights can better help RNNs to remove blur in the feature spaces. Finally, we develop a convolutional neural network (CNN) to restore the sharp images from the deblurred features. Both quantitative and qualitative evaluations on the benchmark datasets demonstrate that the proposed method performs favorably against state-of-the-art algorithms in terms of accuracy, speed, and model size.
翻译:Debluring不仅可以提供更令人愉快的视觉图片,使摄影更方便,还可以改进反向检测和跟踪的性能。 然而,从图像中去除动态场景模糊是一个非三角任务,因为很难模拟非统一模糊的数学模型。 几种方法首先使用单一或多个图像来估计光学流( 被视为模糊内核的近似值), 然后采用非盲分解算法来重建锐利图像。 然而, 这些方法不能以端到端的方式培训,通常在计算上花费很多。 在本文中,我们探索光学流来消除动态场景的模糊性,方法是使用多尺度空间变异的常规神经网络( RNNN) 。 我们利用流程网来估计不同尺度上两个连续图像的光学流。 估计光学流提供了不同尺度的 RNN 重量, 这样重量可以更好地帮助 RNNN 重建特征空间中的模糊性。 最后, 我们开发了一个革命性神经网络( CNN), 以修复从破碎的特征中恢复锐度图像。 我们探索了光学流, 通过使用多尺度的定性和定性的精确性评估方法, 和定性的精确度, 展示了基准的精确度, 。