Non-blind deblurring methods achieve decent performance under the accurate blur kernel assumption. Since the kernel uncertainty (i.e. kernel error) is inevitable in practice, semi-blind deblurring is suggested to handle it by introducing the prior of the kernel (or induced) error. However, how to design a suitable prior for the kernel (or induced) error remains challenging. Hand-crafted prior, incorporating domain knowledge, generally performs well but may lead to poor performance when kernel (or induced) error is complex. Data-driven prior, which excessively depends on the diversity and abundance of training data, is vulnerable to out-of-distribution blurs and images. To address this challenge, we suggest a dataset-free deep residual prior for the kernel induced error (termed as residual) expressed by a customized untrained deep neural network, which allows us to flexibly adapt to different blurs and images in real scenarios. By organically integrating the respective strengths of deep priors and hand-crafted priors, we propose an unsupervised semi-blind deblurring model which recovers the latent image from the blurry image and inaccurate blur kernel. To tackle the formulated model, an efficient alternating minimization algorithm is developed. Extensive experiments demonstrate the favorable performance of the proposed method as compared to data-driven and model-driven methods in terms of image quality and the robustness to the kernel error.
翻译:在准确的模糊内核假设下,无盲分流法在准确的模糊内核假设下实现了体面的业绩。由于内核不确定性(即内核误差)在实践中不可避免,建议采用半盲分流法,通过引入前内核误差(或诱导)来应对这一问题。然而,如何为内核误差(或诱导)设计合适的前置(内核误差)仍然具有挑战性。事先手工制作的将域知识纳入内核误差(或诱导)通常表现良好,但在内核误差复杂时可能导致业绩不佳。由数据驱动的先前数据过度取决于培训数据的多样性和丰度,容易受到分配外的模糊和图像的影响。为了应对这一挑战,我们建议对内核误差(或诱导)错误(或诱导)的先前采用无数据集深度残留法处理;但是,如何设计出适合内核误差(或诱导)的内核误差(作为余误差的内核误差)的先行法,从而灵活适应真实情景中不同模糊的模糊的模糊的模糊性前置(或人为)前置的外差差差差差差差差差差差差值,我们建议采用一个不稳的半差分差差差差差差差差差差差差差差差差差差差差错模型,比错模型,比低化的模型,将低差错模型将低差错制制成制成制成型的图像变的模型,以制成制制制制制成的模型,将低变的模型,将高的底制成的底制制制制成的底制制制制制制制制制制成的图像制制制制制制制制制制成的模型,以制制制成的模型,将制成的模型,将制制制制制制制制制制制制制制成为制成的图像制为制成的模型,以制制制制制制制制制制制制制制制制制制制制制制制制制制为制制制制制制制制制制制制制为制为制制制制制制制制制制制为制制制制制制制制制制制制制制制制制制制制制制制制制制制的</s>