This work investigates conditions for quantitative image reconstruction in multispectral computed tomography (MSCT), which remains a topic of active research. In MSCT, one seeks to obtain from data the spatial distribution of linear attenuation coefficient, referred to as a virtual monochromatic image (VMI), at a given X-ray energy, within the subject imaged. As a VMI is decomposed often into a linear combination of basis images with known decomposition coefficients, the reconstruction of a VMI is thus tantamount to that of the basis images. An empirical, but highly effective, two-step data-domain-decomposition (DDD) method has been developed and used widely for quantitative image reconstruction in MSCT. In the two-step DDD method, step (1) estimates the so-called basis sinogram from data through solving a nonlinear transform, whereas step (2) reconstructs basis images from their basis sinograms estimated. Subsequently, a VMI can readily be obtained from the linear combination of basis images reconstructed. As step (2) involves the inversion of a straightforward linear system, step (1) is the key component of the DDD method in which a nonlinear system needs to be inverted for estimating the basis sinograms from data. In this work, we consider a {\it discrete} form of the nonlinear system in step (1), and then carry out theoretical and numerical analyses of conditions on the existence, uniqueness, and stability of a solution to the discrete nonlinear system for accurately estimating the discrete basis sinograms, leading to quantitative reconstruction of VMIs in MSCT.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员