One way of proving theorems in modal logics is translating them into the predicate calculus and then using conventional resolution-style theorem provers. This approach has been regarded as inappropriate in practice, because the resulting formulas are too lengthy and it is impossible to show the non-theoremhood of modal formulas. In this paper, we demonstrate the practical feasibility of the (relational) translation method. Using a state-of-the-art theorem prover for first-order predicate logic, we proved many benchmark theorems available from the modal logic literature. We show the invalidity of propositional modal and temporal logic formulas, using model generators or satisfiability testers for the classical logic. Many satisfiable formulas are found to have very small models. Finally, several different approaches are compared.
翻译:在模式逻辑中证明理论理论的一种方式是将其转化为上游计算,然后使用常规分辨率式的理论证明。这个方法在实践中被认为是不适当的,因为由此产生的公式过于冗长,无法显示模式公式的非理论性。在本文中,我们展示了(关系)翻译方法的实际可行性。在使用最先进的理论证明法进行第一阶上游逻辑测试时,我们证明了从模式逻辑文献中可以找到的许多基准理论。我们用模型生成器或参数测试器来证明模型模型和时间逻辑公式对古典逻辑是无效的。许多可比较的公式的模型非常小。最后,我们比较了几种不同的方法。