We introduce a novel data-driven framework for the design of targeted gene panels for estimating exome-wide biomarkers in cancer immunotherapy. Our first goal is to develop a generative model for the profile of mutation across the exome, which allows for gene- and variant type-dependent mutation rates. Based on this model, we then propose a new procedure for estimating biomarkers such as tumour mutation burden and tumour indel nurden. Our approach allows the practitioner to select a targeted gene panel of a prespecified size, and then construct an estimator that only depends on the selected genes. Alternatively, the practitioner may apply our method to make predictions based on an existing gene panel, or to augment a gene panel to a given size. We demonstrate the excellent performance of our proposal using data from three non-small cell lung cancer studies, as well as data from six other cancer types.
翻译:我们引入了新的数据驱动框架,用于设计用于估计癌症免疫疗法中全外生物标志的定向基因板。 我们的第一个目标是为全外突变剖面谱开发一个基因模型,允许基因和变异型突变率。 根据这个模型,我们然后提出一个新的程序来估计肿瘤突变负担和纽登肿瘤等生物标志。 我们的方法允许开业者选择一个预定大小的定向基因板,然后建立一个仅取决于选定基因的估算器。 或者,开业者可以运用我们的方法,在现有基因板的基础上进行预测,或者将基因板扩大至一定大小。我们用三个非小细胞肺癌研究的数据以及另外六个癌症类型的数据来展示我们提案的出色表现。