EEG-based recognition of activities and states involves the use of prior neuroscience knowledge to generate quantitative EEG features, which may limit BCI performance. Although neural network-based methods can effectively extract features, they often encounter issues such as poor generalization across datasets, high predicting volatility, and low model interpretability. Hence, we propose a novel lightweight multi-dimensional attention network, called LMDA-Net. By incorporating two novel attention modules designed specifically for EEG signals, the channel attention module and the depth attention module, LMDA-Net can effectively integrate features from multiple dimensions, resulting in improved classification performance across various BCI tasks. LMDA-Net was evaluated on four high-impact public datasets, including motor imagery (MI) and P300-Speller paradigms, and was compared with other representative models. The experimental results demonstrate that LMDA-Net outperforms other representative methods in terms of classification accuracy and predicting volatility, achieving the highest accuracy in all datasets within 300 training epochs. Ablation experiments further confirm the effectiveness of the channel attention module and the depth attention module. To facilitate an in-depth understanding of the features extracted by LMDA-Net, we propose class-specific neural network feature interpretability algorithms that are suitable for event-related potentials (ERPs) and event-related desynchronization/synchronization (ERD/ERS). By mapping the output of the specific layer of LMDA-Net to the time or spatial domain through class activation maps, the resulting feature visualizations can provide interpretable analysis and establish connections with EEG time-spatial analysis in neuroscience. In summary, LMDA-Net shows great potential as a general online decoding model for various EEG tasks.


翻译:EEG基于活动和状态的识别涉及使用先前的神经科学知识生成定量EEG特征,这可能会限制BCI性能。虽然基于神经网络的方法可以有效地提取特征,但它们经常遇到诸如跨数据集的泛化不佳、预测波动大和模型可解释性差等问题。因此,我们提出了一种新颖的轻量级多维注意力网络,称为LMDA-Net。通过结合两个特别为EEG信号设计的新颖注意力模块——通道注意力模块和深度注意力模块,LMDA-Net可以有效地整合来自多个维度的特征,从而提高各种BCI任务的分类性能。我们在四个高影响公共数据集上评估了LMDA-Net,包括运动意向(MI)和P300-Speller范例,并与其他代表性模型进行比较。实验结果表明,在300个训练时期内,LMDA-Net在所有数据集中均取得了最高的准确度,比其他代表性方法的分类准确度和预测波动性都高。消融实验进一步确认了通道注意力模块和深度注意力模块的有效性。为了深入了解LMDA-Net提取的特征,我们提出了适用于事件相关电位(ERPs)和事件相关脱同步/同步(ERD/ERS)的类特异性神经网络特征可解释性算法。通过将特定层的LMDA-Net的输出通过类别激活图映射到时间或空间域,得到的特征可视化可以提供可解释的分析,并与神经科学中的EEG时间空间分析建立联系。总之,LMDA-Net显示出作为各种EEG任务的通用在线解码模型的巨大潜力。

0
下载
关闭预览

相关内容

一文带你浏览Graph Transformers
PaperWeekly
1+阅读 · 2022年7月8日
【ICML2019】IanGoodfellow自注意力GAN的代码与PPT
GAN生成式对抗网络
18+阅读 · 2019年6月30日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
图注意力网络
科技创新与创业
35+阅读 · 2017年11月22日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Self-Attention Graph Pooling
Arxiv
13+阅读 · 2019年6月13日
Arxiv
22+阅读 · 2018年2月14日
Arxiv
11+阅读 · 2018年1月18日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员