Understanding hand-object pose with computer vision opens the door to new applications in mixed reality, assisted living or human-robot interaction. Most methods are trained and evaluated on balanced datasets. This is of limited use in real-world applications; how do these methods perform in the wild on unknown objects? We propose a novel benchmark for object group distribution shifts in hand and object pose regression. We then test the hypothesis that meta-learning a baseline pose regression neural network can adapt to these shifts and generalize better to unknown objects. Our results show measurable improvements over the baseline, depending on the amount of prior knowledge. For the task of joint hand-object pose regression, we observe optimization interference for the meta-learner. To address this issue and improve the method further, we provide a comprehensive analysis which should serve as a basis for future work on this benchmark.
翻译:了解计算机视觉的人工物体将带来计算机视觉,这打开了在混合现实、辅助生活或人体机器人相互作用中进行新应用的大门。大多数方法都是在平衡的数据集上进行培训和评价的。 这是在现实世界应用中的有限用途; 这些方法如何在野外对未知物体发挥作用? 我们为物体群体手掌上和物体的分布转移提出了一个新的基准,并造成倒退。 然后我们测试一个假设,即元化学习将带来倒退神经网络,可以适应这些变化,并更好地对未知物体进行概括化。我们的结果显示,根据先前的知识数量,在基线上取得了可衡量的改进。关于联合的手式物体构成回归的任务,我们观察了元左倾体的优化干扰。为了解决这一问题并进一步改进方法,我们提供了全面分析,这应该作为今后关于这一基准的工作的基础。