Interrupted time series (ITS) is often used to evaluate the effectiveness of a health policy intervention that accounts for the temporal dependence of outcomes. When the outcome of interest is a percentage or percentile, the data can be highly skewed, bounded in $[0, 1]$, and have many zeros or ones. A three-part Beta regression model is commonly used to separate zeros, ones, and positive values explicitly by three submodels. However, incorporating temporal dependence into the three-part Beta regression model is challenging. In this article, we propose a marginalized zero-one-inflated Beta time series model that captures the temporal dependence of outcomes through copula and allows investigators to examine covariate effects on the marginal mean. We investigate its practical performance using simulation studies and apply the model to a real ITS study.
翻译:中断的时间序列(ITS)通常用于评估健康政策干预的有效性,该干预考虑到结果对时间的依赖性。当利息的结果是一个百分比或百分位值时,数据会高度偏斜,以$[0,1]为界限,并且有多个零或一。一个三部分的Beta回归模型通常用于将零、一和正值分别使用三个子模型。然而,将时间依赖性纳入三部分的Beta回归模型具有挑战性。在本篇文章中,我们建议采用一个边缘化的零一膨胀的Beta时间序列模型,通过千叶胶捕捉结果的暂时依赖性,让调查人员检查对边际平均值的影响。我们使用模拟研究来调查其实际表现,并将模型应用到真正的ITS研究中。