A core tension in the study of plurality elections is the clash between the classic Hotelling-Downs model, which predicts that two office-seeking candidates should position themselves at the median voter's policy, and the empirical observation that real-world democracies often have two major parties with divergent policies. Motivated by this tension and drawing from bounded rationality, we introduce a dynamic model of candidate positioning based on a simple behavioral heuristic: candidates imitate the policy of previous winners. The resulting model is closely connected to evolutionary replicator dynamics and exhibits complex behavior, despite its simplicity. For uniformly-distributed voters, we prove that when there are $k = 2$, $3$, or $4$ candidates per election, any symmetric candidate distribution converges over time to a concentration of candidates at the center. With $k \ge 5$, however, we prove that the candidate distribution does not converge to the center. For initial distributions without any extreme candidates, we prove a stronger statement than non-convergence, showing that the density in an interval around the center goes to zero when $k \ge 5$. As a matter of robustness, our conclusions are qualitatively unchanged if a small fraction of candidates are not winner-copiers and are instead positioned uniformly at random. Beyond our theoretical analysis, we illustrate our results in simulation; for five or more candidates, we find a tendency towards the emergence of two clusters, a mechanism suggestive of Duverger's Law, the empirical finding that plurality leads to two-party systems. Our simulations also explore several variations of the model, including non-uniform voter distributions and other forms of noise, which exhibit similar convergence patterns. Finally, we discuss the relationship between our model and prior work on strategic equilibria of candidate positioning games.


翻译:暂无翻译

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
18+阅读 · 2022年11月21日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
18+阅读 · 2022年11月21日
Arxiv
12+阅读 · 2022年11月21日
Arxiv
11+阅读 · 2021年2月17日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员