We study a semidiscrete analogue of the Unified Transform Method introduced by A. S. Fokas, to solve initial-boundary-value problems for linear evolution partial differential equations with constant coefficients on the finite interval $x \in (0,L)$. The semidiscrete method is applied to various spatial discretizations of several first and second-order linear equations, producing the exact solution for the semidiscrete problem, given appropriate initial and boundary data. From these solutions, we derive alternative series representations that are better suited for numerical computations. In addition, we show how the Unified Transform Method treats derivative boundary conditions and ghost points introduced by the choice of discretization stencil and we propose the notion of "natural" discretizations. We consider the continuum limit of the semidiscrete solutions and compare with standard finite-difference schemes.
翻译:我们研究了A. S. Fokas采用的统一变换方法的半分解类比,以解决线性进化部分变异方程的初始边际价值问题,在一定的间隔 $x / in (0,L) 美元上以恒定系数计算线性进化部分变异方程。半分解方法适用于若干一级和二级单线方程的各种空间分解,根据适当的初始数据和边界数据,为半分解问题提供确切的解决方案。我们从这些解决方案中得出更适合数字计算的其他系列表示。此外,我们展示了统一变异方法如何处理分解变异性定型的边界条件和幽灵点,我们提出了“自然”分解概念。我们考虑了半分解式解决办法的连续极限,并与标准的有限差异计划进行了比较。