A recent line of work on VC set systems in minor-free (undirected) graphs, starting from Li and Parter, who constructed a new VC set system for planar graphs, has given surprising algorithmic results. In this work, we initialize a more systematic study of VC set systems for minor-free graphs and their applications in both undirected graphs and directed graphs (a.k.a digraphs). More precisely: - We propose a new variant of Li-Parter set system for undirected graphs. - We extend our set system to $K_h$-minor-free digraphs and show that its VC dimension is $O(h^2)$. - We show that the system of directed balls in minor-free digraphs has VC dimension at most $h-1$. - On the negative side, we show that VC set system constructed from shortest path trees of planar digraphs does not have a bounded VC dimension. The highlight of our work is the results for digraphs, as we are not aware of known algorithmic work on constructing and exploiting VC set systems for digraphs.


翻译:最近关于VC集合在无小图中的工作线, 起源于Li和Parter提出了一种新的适用于平面图的VC集合系统,取得了出乎意料的算法结果。在本文中,我们在无小图中系统地研究了VC集合系统及其在无向图和有向图中的应用。具体来说:- 我们提出了Li-Parter集合系统的新变体,适用于非有向图(undirected graphs)。- 我们将这个集合系统扩展到K_h-小图无向图中,并证明其VC维度为O(h2)。- 我们证明了无小图中的有向球体的集合系统的VC维度最多为h-1。- 在负面方面,我们证明了从平面有向图的最短路径树构造的VC集合系统没有有界的VC维度。我们的工作亮点是针对有向图的结果,因为我们不知道已有的构建和利用VC集合系统的算法工作是否适用于有向图。

0
下载
关闭预览

相关内容

有向图模型又称为贝叶斯网络,属于概率图模型中的一类。
Graph Transformer近期进展
专知会员服务
61+阅读 · 2023年1月5日
【ICDM 2022教程】图挖掘中的公平性:度量、算法和应用
专知会员服务
27+阅读 · 2022年12月26日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IJCAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月22日
Arxiv
0+阅读 · 2023年5月22日
Arxiv
66+阅读 · 2022年4月13日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
IJCAI2022推荐系统论文集锦
机器学习与推荐算法
0+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员