We consider the matrix least squares problem of the form $\| \mathbf{A} \mathbf{X}-\mathbf{B} \|_F^2$ where the design matrix $\mathbf{A} \in \mathbb{R}^{N \times r}$ is tall and skinny with $N \gg r$. We propose to create a sketched version $\| \tilde{\mathbf{A}}\mathbf{X}-\tilde{\mathbf{B}} \|_F^2$ where the sketched matrices $\tilde{\mathbf{A}}$ and $\tilde{\mathbf{B}}$ contain weighted subsets of the rows of $\mathbf{A}$ and $\mathbf{B}$, respectively. The subset of rows is determined via random sampling based on leverage score estimates for each row. We say that the sketched problem is $\epsilon$-accurate if its solution $\tilde{\mathbf{X}}_{\rm \text{opt}} = \text{argmin } \| \tilde{\mathbf{A}}\mathbf{X}-\tilde{\mathbf{B}} \|_F^2$ satisfies $\|\mathbf{A}\tilde{\mathbf{X}}_{\rm \text{opt}}-\mathbf{B} \|_F^2 \leq (1+\epsilon) \min \| \mathbf{A}\mathbf{X}-\mathbf{B} \|_F^2$ with high probability. We prove that the number of samples required for an $\epsilon$-accurate solution is $O(r/(\beta \epsilon))$ where $\beta \in (0,1]$ is a measure of the quality of the leverage score estimates.
翻译:我们考虑的是 $\\\ mathbf{ A} {\\ mathbf{ {\ fil} {\ tleff{ B} -\ mathb{ B} =2$ 设计矩阵$\mathbf{A}}\ in\mathb{R}} 美元高和瘦。 我们提议创建一个草图版 $\\\ tleb\ mathf{ A} { {\ fterb{ { {\ fr}\\\ tleffff{ B} { { { trede\ freff{B} B} $\\ fthffff}}}} {B} ===========xxxxxxxx=mafff} 数字高。 我们的草图问题是 = = =xilon $\\\\\\\ x_} fr} fr\\\\\\ x=ma=ma a rodede ma=xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx