An avatar mirroring the user's movement is commonly adopted in Virtual Reality(VR). Maintaining the user-avatar movement consistency provides the user a sense of body ownership and thus an immersive experience. However, breaking this consistency can enable new interaction functionalities, such as pseudo haptic feedback or input augmentation, at the expense of immersion. We propose to quantify the probability of users noticing the movement inconsistency while the inconsistency amplitude is being enlarged, which aims to guide the intervention of the users' sense of body ownership in VR. We applied angular offsets to the avatar's shoulder and elbow joints and recorded whether the user identified the inconsistency through a series of three user studies and built a statistical model based on the results. Results show that the noticeability of movement inconsistency increases roughly quadratically with the enlargement of offsets and the offsets at two joints negatively affect the probability distributions of each other. Leveraging the model, we implemented a technique that amplifies the user's arm movements with unnoticeable offsets and then evaluated implementations with different parameters(offset strength, offset distribution). Results show that the technique with medium-level and balanced-distributed offsets achieves the best overall performance. Finally, we demonstrated our model's extendability in interventions in the sense of body ownership with three VR applications including stroke rehabilitation, action game and widget arrangement.


翻译:虚拟Reality( VR) 通常会采用反映用户运动变化的anvatar 。 维持用户- fatar 运动的一致性能给用户带来一种身体自有感, 从而带来一种沉浸的经验。 但是, 打破这种一致性可以促成新的互动功能, 如假的顺序反馈或增加输入, 而不是沉浸。 我们提议量化注意到移动不一致的用户的概率, 而不一致的振幅正在扩大, 目的是指导用户在虚拟Real( VR) 中的身体自有感的干预。 我们用一个角偏角的抵消, 记录用户的肩膀和肘部连接是否通过一系列的用户研究发现不一致, 并记录用户是否根据结果建立了统计模型模型模型模型模型。 结果显示,随着抵消的扩大和两个关节的抵消,运动不协调性会增加大致的四倍增。 我们利用模型应用了一种技术,用无法察觉的抵消用户的手臂运动,然后用不同的参数来评价执行情况( 逆向强度, 抵消了分配结果显示, 以最均衡的方式, 以我们最均衡的方式在中间的动作上, 抵消了我们展示的动作 。

0
下载
关闭预览

相关内容

Into the Metaverse,93页ppt介绍元宇宙概念、应用、趋势
专知会员服务
47+阅读 · 2022年2月19日
专知会员服务
31+阅读 · 2021年6月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年6月14日
Arxiv
0+阅读 · 2022年6月10日
Arxiv
12+阅读 · 2022年4月30日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员