We introduce a novel approach to inference on parameters that take values in a Riemannian manifold embedded in a Euclidean space. Parameter spaces of this form are ubiquitous across many fields, including chemistry, physics, computer graphics, and geology. This new approach uses generalized fiducial inference to obtain a posterior-like distribution on the manifold, without needing to know a parameterization that maps the constrained space to an unconstrained Euclidean space. The proposed methodology, called the constrained generalized fiducial distribution (CGFD), is obtained by using mathematical tools from Riemannian geometry. A Bernstein-von Mises-type result for the CGFD, which provides intuition for how the desirable asymptotic qualities of the unconstrained generalized fiducial distribution are inherited by the CGFD, is provided. To demonstrate the practical use of the CGFD, we provide three proof-of-concept examples: inference for data from a multivariate normal density with the mean parameters on a sphere, a linear logspline density estimation problem, and a reimagined approach to the AR(1) model, all of which exhibit desirable coverages via simulation. We discuss two Markov chain Monte Carlo algorithms for the exploration of these constrained parameter spaces and adapt them for the CGFD.
翻译:我们引入了一种新的方法来推断嵌入欧洲大陆空间的里格曼式多元体中的数值参数。 这种形式的参数空间在化学、物理、计算机图形和地质等许多领域都普遍存在。 这种新方法使用普遍的外观推法,在多元体上获得类似后方分布,而不需要知道将有限空间映射为不受限制的欧格莱底空间的参数化。提议的方法称为限制的普遍分布(CGFD ), 是通过使用里格曼尼亚地貌学数学工具获得的。 这种形式的参数空间在化学、物理、计算机图形和地质学等许多领域都普遍存在。 这种新方法为CGFD所继承的未受限制的普遍分布的可取性属性提供了直观性推论。 为了展示CGFD的实际用途,我们提供了三个证据性实例:从多变正常密度中得出数据以及一个领域的平均参数的推论, 一种线性对流密度的密度估计,一种伯斯坦-冯·米斯型结果,为CGFAR1 提供了直观性分析, 并用我们两个理想的CFA-C-C-C-Sqolimal viewsimal viewslal 来讨论这些Aviewsimation Exviolal viewal view view view violal view viewsal violal violviolview violviolview viold vicolal violalbol violal vical vicolvicoldalpolviolvicolvicold vicold vicoldald 。我们这些这些这些 vicoldaldal 方法,我们这些 方法, 。我们这些 的模型, vicolal 方法,我们用了这些 的模型,我们这些 的模型,我们通过两个Avicolal 方法,以便 和这些 vicolal vicolal vicolal vicololololal vicolal vicolal vicolal 方法,以这些 的模型,以这些模型,我们这些 的模型,以便这些模型的模型的模型的模型,我们