Word Sense Disambiguation (WSD) aims to identify the correct meaning of polysemous words in the particular context. Lexical resources like WordNet which are proved to be of great help for WSD in the knowledge-based methods. However, previous neural networks for WSD always rely on massive labeled data (context), ignoring lexical resources like glosses (sense definitions). In this paper, we integrate the context and glosses of the target word into a unified framework in order to make full use of both labeled data and lexical knowledge. Therefore, we propose GAS: a gloss-augmented WSD neural network which jointly encodes the context and glosses of the target word. GAS models the semantic relationship between the context and the gloss in an improved memory network framework, which breaks the barriers of the previous supervised methods and knowledge-based methods. We further extend the original gloss of word sense via its semantic relations in WordNet to enrich the gloss information. The experimental results show that our model outperforms the state-of-theart systems on several English all-words WSD datasets.
翻译:Wordsense Disandguation (WSD) 旨在确定特定背景下多种单词的正确含义。 WordNet 这样的词汇资源在知识型方法中被证明对WSD很有帮助。 但是, WSD 以前的神经网络总是依赖大量标签数据(文体),忽视了诸如glosses(感知定义)等词汇资源。 在本文中,我们将目标词的上下文和遗迹整合到一个统一框架中,以便充分利用标签数据和词汇学知识。 因此,我们建议 GAS: 联合编码目标词的上下文和遗迹的Gloss- 增强的 WSD 神经网络。 GAS 在改进的记忆网络框架内,将上下文和光谱体之间的语义关系建模,打破了先前监督方法和知识型方法的障碍。 我们通过WordNet 的语义关系进一步扩展原始的单词感,以丰富光谱信息。 实验结果显示, 我们的模型超越了几个英文所有字系的 WSDD 数据集上的状态- 系统 。