Knowledge graphs, on top of entities and their relationships, contain another important element: literals. Literals encode interesting properties (e.g. the height) of entities that are not captured by links between entities alone. Most of the existing work on embedding (or latent feature) based knowledge graph modeling focuses mainly on the relations between entities. In this work, we study the effect of incorporating literal information into existing knowledge graph models. Our approach, which we name LiteralE, is an extension that can be plugged into existing latent feature methods. LiteralE merges entity embeddings with their literal information using a learnable, parametrized function, such as a simple linear or nonlinear transformation, or a multilayer neural network. We extend several popular embedding models using LiteralE and evaluate the performance on the task of link prediction. Despite its simplicity, LiteralE proves to be an effective way to incorporate literal information into existing embedding based models, improving their performance on different standard datasets, which we augmented with their literals and provide as testbed for further research.
翻译:以实体及其关系为顶端的知识图形包含另一个重要元素: 字面文字。 字面文字编码了实体不单由实体之间链接所捕捉的有趣的属性( 高度 ) 。 以嵌入( 潜在特征) 为基础的知识图形模型的现有大部分工作主要侧重于实体之间的关系 。 在这项工作中, 我们研究将字面信息纳入现有知识图形模型的影响 。 我们命名LiteralE 的方法是一个可以插入现有潜在特征方法的延伸。 字面E 合并了实体与它们的字面信息嵌入, 使用了简单线性或非线性变换或多层线性线性网络等可学习的功能。 我们使用LiteralE 扩展了几个受欢迎的嵌入模型, 并评估了连接预测任务的业绩 。 尽管它简单, LiteralE 证明是一个有效的方法, 将字面信息纳入现有的嵌入模型, 改进它们在不同标准数据集上的性能, 我们用其光量加以扩充, 作为进一步研究的试验床 。