Many psychological experiments have participants repeat a simple task. This repetition is often necessary in order to gain the statistical precision required to answer questions about quantitative theories of the psychological processes underlying performance. In such experiments, time-on-task can have sizable effects on performance, changing the psychological processes under investigation in interesting ways. These changes are often ignored, and the underlying process is treated as static. We propose modern statistical approaches that are based on recent advances in particle Markov chain Monte-Carlo (MCMC) to extend a static model of decision-making to account for time-varying changes in a psychologically plausible manner. Using data from three highly-cited experiments we show that there are changes in performance with time-on-task, and that these changes vary substantially over individuals. We find strong evidence in favor of a hidden Markov switching process as an explanation of time-varying effects. This embodies the psychological assumption that participants switch between different cognitive states, representing different modes of decision-making, and explains key long- and short-term dynamic effects in the data. The central idea of our approach can be applied quite generally to quantitative psychological theories, beyond the models and data sets that we investigate.
翻译:许多心理实验的参与者重复了一个简单的任务。这种重复往往是必要的,以便获得必要的统计精确度,以解答关于表现所依据的心理过程的定量理论的问题。在这样的实验中,时间上的任务可以对表现产生巨大的影响,以有趣的方式改变正在调查的心理过程。这些变化往往被忽视,而基本的过程则被视为静态的。我们提出基于粒子Markov链Monte-Carlo(MCMC)最近的进展的现代统计方法,以扩大静态的决策模式,以从心理上看似合理的方式解释时间变化。我们利用三个高度引用的实验的数据,我们表明在时间上的工作表现有变化,这些变化对个人有很大的不同。我们发现强有力的证据,支持隐蔽的Markov转换过程,以此解释时间变化的影响。这体现了一种心理假设,即参与者在不同认知状态之间转换,代表不同的决策模式,并解释数据中的关键长期和短期动态效应。我们方法的中心思想可以被广泛应用于定量的心理理论,超出了我们调查的模式和数据集。