Understanding how the adult human brain learns novel categories is an important problem in neuroscience. Drift-diffusion models are popular in such contexts for their ability to mimic the underlying neural mechanisms. One such model for gradual longitudinal learning was recently developed by Paulon et al. (2021). Fitting conventional drift-diffusion models, however, requires data on both category responses and associated response times. In practice, category response accuracies are often the only reliable measure recorded by behavioral scientists to describe human learning. However, To our knowledge, drift-diffusion models for such scenarios have never been considered in the literature. To address this gap, in this article, we build carefully on Paulon et al. (2021), but now with latent response times integrated out, to derive a novel biologically interpretable class of `inverse-probit' categorical probability models for observed categories alone. However, this new marginal model presents significant identifiability and inferential challenges not encountered originally for the joint model by Paulon et al. (2021). We address these new challenges using a novel projection-based approach with a symmetry-preserving identifiability constraint that allows us to work with conjugate priors in an unconstrained space. We adapt the model for group and individual-level inference in longitudinal settings. Building again on the model's latent variable representation, we design an efficient Markov chain Monte Carlo algorithm for posterior computation. We evaluate the empirical performance of the method through simulation experiments. The practical efficacy of the method is illustrated in applications to longitudinal tone learning studies.
翻译:暂无翻译