Sparse roadmaps are important to compactly represent state spaces, to determine problems to be infeasible and to terminate in finite time. However, sparse roadmaps do not scale well to high-dimensional planning problems. In prior work, we showed improved planning performance on high-dimensional planning problems by using multilevel abstractions to simplify state spaces. In this work, we generalize sparse roadmaps to multilevel abstractions by developing a novel algorithm, the sparse multilevel roadmap planner (SMLR). To this end, we represent multilevel abstractions using the language of fiber bundles, and generalize sparse roadmap planners by using the concept of restriction sampling with visibility regions. We argue SMLR to be probabilistically complete and asymptotically near-optimal by inheritance from sparse roadmap planners. In evaluations, we outperform sparse roadmap planners on challenging planning problems, in particular problems which are high-dimensional, contain narrow passages or are infeasible. We thereby demonstrate sparse multilevel roadmaps as an efficient tool for feasible and infeasible high-dimensional planning problems.
翻译:粗略的路线图对于狭义地代表国家空间、确定不可行和在有限时间内终止的问题十分重要。 但是,稀少的路线图并没有达到高维的规划问题的程度。 在先前的工作中,我们通过使用多层次的抽象学来简化国家空间,展示了在高维规划问题上更好的规划绩效。在这项工作中,我们通过开发一种新奇的算法,即稀少的多层次路线图规划师(SMLR),将稀少的路线图推广到多层次的抽象学上。为此,我们使用纤维捆绑的语言,将稀少的路线图规划者普遍化,利用可见度区域限制抽样的概念。我们说,SMLR通过分散的路线图规划师的继承,可以概率性地完整和无症状性地接近于高维规划问题。在评估中,我们在挑战规划问题上,特别是高维、包含狭窄通道或不可行的高维规划问题,我们因此展示了稀少的多层次路线图,作为可行和不可行的高维规划问题的有效工具。