The past decade has witnessed a surge of endeavors in statistical inference for high-dimensional sparse regression, particularly via de-biasing or relaxed orthogonalization. Nevertheless, these techniques typically require a more stringent sparsity condition than needed for estimation consistency, which seriously limits their practical applicability. To alleviate such constraint, we propose to exploit the identifiable features to residualize the design matrix before performing debiasing-based inference over the parameters of interest. This leads to a hybrid orthogonalization (HOT) technique that performs strict orthogonalization against the identifiable features but relaxed orthogonalization against the others. Under an approximately sparse model with a mixture of identifiable and unidentifiable signals, we establish the asymptotic normality of the HOT test statistic while accommodating as many identifiable signals as consistent estimation allows. The efficacy of the proposed test is also demonstrated through simulation and analysis of a stock market dataset.


翻译:过去十年来,在高维稀薄回归的统计推论方面,特别是通过去偏向性或放松正向性,出现了一股巨大的努力,然而,这些技术通常需要比估计一致性更严格的宽度条件,这严重限制了其实际适用性。为了减轻这种限制,我们提议利用可识别的特征来保留设计矩阵,然后对利益参数进行基于偏向性的推论。这导致一种混合或分解(HOT)技术,对可识别特征进行严格的正方位化,但对其他特征则进行宽松或正向化。在一个几乎稀少的模型中,有可识别和不可识别的信号混合,我们建立了HOT测试统计的无损常态性,同时在一致估计所允许的范围内容纳许多可识别的信号。通过对股票市场数据集进行模拟和分析,也证明了拟议测试的有效性。

0
下载
关闭预览

相关内容

因果推断,Causal Inference:The Mixtape
专知会员服务
103+阅读 · 2021年8月27日
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
5+阅读 · 2018年11月27日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月26日
Arxiv
0+阅读 · 2022年1月26日
Arxiv
3+阅读 · 2018年1月10日
Arxiv
3+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
5+阅读 · 2018年11月27日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员