Consider the following computational problem: given a regular digraph $G=(V,E)$, two vertices $u,v \in V$, and a walk length $t\in \mathbb{N}$, estimate the probability that a random walk of length $t$ from $u$ ends at $v$ to within $\pm \varepsilon.$ A randomized algorithm can solve this problem by carrying out $O(1/\varepsilon^2)$ random walks of length $t$ from $u$ and outputting the fraction that end at $v$. In this paper, we study deterministic algorithms for this problem that are also restricted to carrying out walks of length $t$ from $u$ and seeing which ones end at $v$. Specifically, if $G$ is $d$-regular, the algorithm is given oracle access to a function $f : [d]^t\to \{0,1\}$ where $f(x)$ is $1$ if the walk from $u$ specified by the edge labels in $x$ ends at $v$. We assume that G is consistently labelled, meaning that the edges of label $i$ for each $i\in [d]$ form a permutation on $V$. We show that there exists a deterministic algorithm that makes $\text{poly}(dt/\varepsilon)$ nonadaptive queries to $f$, regardless of the number of vertices in the graph $G$. Crucially, and in contrast to the randomized algorithm, our algorithm does not simply output the average value of its queries. Indeed, Hoza, Pyne, and Vadhan (ITCS 2021) showed that any deterministic algorithm of the latter form that works for graphs of unbounded size must have query complexity at least $\exp(\tilde{\Omega}(\log(t)\log(1/\varepsilon)))$.


翻译:考虑以下计算问题 : 如果有固定的 $G= (V,E) 美元, 两张双螺旋 $u,v\ in V$, 和行走长度 $t\ mathb{N} 美元, 估计美元以美元为终点的随机行走的概率, 美元以美元为终点, 美元以美元为限 。 随机化算法可以通过执行 O( 1/\ varepsilon) 美元为单位的随机行走, 美元以美元为单位, 美元以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为单位, 以美元为美元

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年10月18日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员