With machine learning models being increasingly used to aid decision making even in high-stakes domains, there has been a growing interest in developing interpretable models. Although many supposedly interpretable models have been proposed, there have been relatively few experimental studies investigating whether these models achieve their intended effects, such as making people more closely follow a model's predictions when it is beneficial for them to do so or enabling them to detect when a model has made a mistake. We present a sequence of pre-registered experiments(N=3,800) in which we showed participants functionally identical models that varied only in two factors commonly thought to make machine learning models more or less interpretable: the number of features and the transparency of the model (i.e., whether the model internals are clear or black box). Predictably, participants who saw a clear model with few features could better simulate the model's predictions. However, we did not find that participants more closely followed its predictions. Furthermore, showing participants a clear model meant that they were less able to detect and correct for the model's sizable mistakes, seemingly due to information overload. These counterintuitive findings emphasize the importance of testing over intuition when developing interpretable models.


翻译:随着机器学习模型越来越多地被用来帮助决策,即使是在高镜头领域,人们也越来越有兴趣开发可解释模型。虽然提出了许多所谓可解释模型,但相对较少的实验研究调查这些模型是否达到预期效果,例如使人们在有利于他们时更密切地遵循模型的预测,或者在模型出错时能够发现模型的预测。我们提出了一系列预先登记的实验(N=3 800),在其中我们向参与者展示了功能相同的模型,这些模型在通常认为使机器学习模型更难或更难解释的两个因素上有所不同:特征的数量和模型的透明度(即模型内部的特征是清晰的还是黑盒子)。可以预测的是,那些看到清晰模型的模型的人可以更好地模拟模型的预测。然而,我们没有发现参与者更密切地遵循模型的预测。此外,向参与者展示一个明确的模型意味着他们不太能够检测和纠正模型的可测量错误,似乎由于信息过重。这些反直觉的调查结果强调在开发可解释模型时测试直觉的重要性。

1
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
4+阅读 · 2018年5月14日
Arxiv
16+阅读 · 2018年2月7日
Arxiv
3+阅读 · 2017年12月23日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Top
微信扫码咨询专知VIP会员