Image inpainting refers to the restoration of an image with missing regions in a way that is not detectable by the observer. The inpainting regions can be of any size and shape. This is an ill-posed inverse problem that does not have a unique solution. In this work, we focus on learning-based image completion methods for multiple and diverse inpainting which goal is to provide a set of distinct solutions for a given damaged image. These methods capitalize on the probabilistic nature of certain generative models to sample various solutions that coherently restore the missing content. Along the chapter, we will analyze the underlying theory and analyze the recent proposals for multiple inpainting. To investigate the pros and cons of each method, we present quantitative and qualitative comparisons, on common datasets, regarding both the quality and the diversity of the set of inpainted solutions. Our analysis allows us to identify the most successful generative strategies in both inpainting quality and inpainting diversity. This task is closely related to the learning of an accurate probability distribution of images. Depending on the dataset in use, the challenges that entail the training of such a model will be discussed through the analysis.
翻译:图像映射图中指的是以观察员无法检测的方式恢复缺少区域的图像。 绘制区域可以是任何大小和形状的。 这是一个错误的反向问题,没有独有的解决办法。 在这项工作中, 我们侧重于以学习为基础的图像完成方法, 用于多重和多种映射, 目的是为特定受损图像提供一套不同的解决方案。 这些方法利用某些基因化模型的概率性, 抽样各种能够一致恢复缺失内容的解决方案。 在一章中, 我们将分析基本理论, 分析最近关于多个绘图的建议。 为了调查每种方法的利弊, 我们介绍关于通用数据集的定量和定性比较, 涉及插画解决方案组合的质量和多样性。 我们的分析使我们能够确定在绘制质量和绘制多样性方面最成功的基因化战略。 这项任务与了解图像的准确概率分布密切相关。 根据使用的数据集, 将讨论需要培训这种模型的挑战。