Domain generalization in medical image classification is an important problem for trustworthy machine learning to be deployed in healthcare. We find that existing approaches for domain generalization which utilize ground-truth abnormality segmentations to control feature attributions have poor out-of-distribution (OOD) performance relative to the standard baseline of empirical risk minimization (ERM). We investigate what regions of an image are important for medical image classification and show that parts of the background, that which is not contained in the abnormality segmentation, provides helpful signal. We then develop a new task-specific mask which covers all relevant regions. Utilizing this new segmentation mask significantly improves the performance of the existing methods on the OOD test sets. To obtain better generalization results than ERM, we find it necessary to scale up the training data size in addition to the usage of these task-specific masks.
翻译:在医学图像分类方面,一般化是值得信赖的机器学习在医疗保健中应用的一个重要问题。我们发现,现有的利用地面真实异常分解控制特征属性的域化方法,与实验风险最小化的标准基线相比,在分布上(OOOD)的性能较差。我们调查图像的哪些区域对医学图像分类很重要,并表明部分背景,即非异常分解中包含的部分,提供了有用的信号。我们随后开发了一个涵盖所有相关区域的新任务特有遮罩。利用这个新的分解掩罩大大改进了OOOD测试组现有方法的性能。为了取得比机构风险管理更好的一般化结果,我们认为有必要在使用这些特定任务口罩之外,扩大培训数据的规模。