Opinion spam has become a widespread problem in social media, where hired spammers write deceptive reviews to promote or demote products to mislead the consumers for profit or fame. Existing works mainly focus on manually designing discrete textual or behavior features, which cannot capture complex semantics of reviews. Although recent works apply deep learning methods to learn review-level semantic features, their models ignore the impact of the user-level and product-level information on learning review semantics and the inherent user-review-product relationship information. In this paper, we propose a Hierarchical Fusion Attention Network (HFAN) to automatically learn the semantics of reviews from the user and product level. Specifically, we design a multi-attention unit to extract user(product)-related review information. Then, we use orthogonal decomposition and fusion attention to learn a user, review, and product representation from the review information. Finally, we take the review as a relation between user and product entity and apply TransH to jointly encode this relationship into review representation. Experimental results obtained more than 10\% absolute precision improvement over the state-of-the-art performances on four real-world datasets, which show the effectiveness and versatility of the model.


翻译:在社会媒体上,意见垃圾已成为一个普遍的问题,雇用的垃圾邮件撰写欺骗性评论,以促销或演示产品,误导消费者获取利润或名声。现有工作主要侧重于手动设计独立的文本或行为特征,无法捕捉复杂的审查语义。虽然最近的工作采用深层次学习方法学习审查层次的语义特征,但其模型忽视了用户一级和产品一级信息对学习审查语义和固有的用户-审查-产品关系信息的影响。在本文中,我们提议建立一个等级融合关注网络(HFAN),以便从用户和产品一级自动学习审查的语义。具体地说,我们设计了一个多目的单位,以提取与用户(产品)有关的审查信息。然后,我们用复式解析和聚合关注来学习用户、审查以及审查信息中产品代表的影响力。最后,我们把审查视为用户和产品实体之间的关系,并应用TransH 将这一关系联合编码为审查代表。实验结果比州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-州-

1
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
160+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
167+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
89+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
98+阅读 · 2019年10月9日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Learning to Focus when Ranking Answers
Arxiv
5+阅读 · 2018年8月8日
Arxiv
7+阅读 · 2014年6月27日
VIP会员
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
25+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】图上的表示学习综述
机器学习研究会
12+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员