We extend the notion of cointegration for time series taking values in a potentially infinite dimensional Banach space. Examples of such time series include stochastic processes in C[0,1] equipped with the supremum distance and those in a finite dimensional vector space equipped with a non-Euclidean distance. We then develop versions of the Granger-Johansen representation theorems for I(1) and I(2) autoregressive (AR) processes taking values in such a space. To achieve our goal, we first note that an AR(p) law of motion can be characterized by a linear operator pencil via the companion form representation, and then study the spectral properties of a linear operator pencil to obtain a necessary and sufficient condition for a given AR(p) law of motion to admit I(1) or I(2) solutions. These operator-theoretic results form a fundamental basis for our representation theorems. Furthermore, it is shown that our operator-theoretic approach is in fact a closely related extension of the conventional approach taken in a Euclidean space setting. Our theoretical results may be especially relevant in a recently growing literature on functional time series analysis in Banach spaces.
翻译:我们扩展了时间序列结合的概念,在可能无限的Banach空间中获取时间序列的数值;这种时间序列的例子包括C[0,1]中装有超光谱距离的随机过程,以及装有非单子距离的有限维矢量空间中的这种过程;然后我们为I(1)和I(2) 开发了Granger-Johansen代表该空间数值的理论的版本;为了实现我们的目标,我们首先注意到AR(p)运动法可以通过相伴形式表示线性操作者铅笔的特征,然后研究线性操作者铅笔的光谱特性,以便为特定AR(p)运动法允许I(1)或I(2)解决方案获得必要和充分的条件。这些操作者理论结果构成了我们在这种空间中代表这些符号的基本基础。此外,我们操作者理论方法实际上与Euclidean空间设置中采用的传统方法密切相关,我们的理论结果可能与最近增长的关于Banach空间功能时间序列分析的文献特别相关。