We consider X 1 ,. .. , X n a sample of data on the circle S 1 , whose distribution is a twocomponent mixture. Denoting R and Q two rotations on S 1 , the density of the X i 's is assumed to be g(x) = pf (R --1 x) + (1 -- p)f (Q --1 x), where p $\in$ (0, 1) and f is an unknown density on the circle. In this paper we estimate both the parametric part $\theta$ = (p, R, Q) and the nonparametric part f. The specific problems of identifiability on the circle are studied. A consistent estimator of $\theta$ is introduced and its asymptotic normality is proved. We propose a Fourier-based estimator of f with a penalized criterion to choose the resolution level. We show that our adaptive estimator is optimal from the oracle and minimax points of view when the density belongs to a Sobolev ball. Our method is illustrated by numerical simulations.
翻译:我们认为 X 1,. X n 是圆 S 1 上的数据样本, S 1 的分布是两个成分混合物。 在 S 1 上说明 R 和 Q 2 旋转, X i 的密度假定为 g(x) = pf (R - 1 x) + (1 - p)f (Q - 1 x) + (1 - p)f (1 - p)f (Q - 1 x), 其中p $\ in$ (0, 1) 和 f 是圆上一个未知的密度。 在本文中,我们估计了参数部分$\theta$ = (p, R, Q) 和非参数部分 f 。 正在研究圆圈内可识别性的具体问题。 引入了一个 $\theta$ 的一致估计值, 并证明了其无症状的正常性。 我们建议使用一个基于四倍基的估量器来选择解析度水平, 其标准受罚。 我们显示, 当密度属于 Sobolevlev 球时, 我们的调适点和微轴点的估测器是最佳的。 我们的方法通过数字模拟来说明。