This paper introduces a method to encode the blur operators of an arbitrary dataset of sharp-blur image pairs into a blur kernel space. Assuming the encoded kernel space is close enough to in-the-wild blur operators, we propose an alternating optimization algorithm for blind image deblurring. It approximates an unseen blur operator by a kernel in the encoded space and searches for the corresponding sharp image. Unlike recent deep-learning-based methods, our system can handle unseen blur kernel, while avoiding using complicated handcrafted priors on the blur operator often found in classical methods. Due to the method's design, the encoded kernel space is fully differentiable, thus can be easily adopted in deep neural network models. Moreover, our method can be used for blur synthesis by transferring existing blur operators from a given dataset into a new domain. Finally, we provide experimental results to confirm the effectiveness of the proposed method.
翻译:本文引入了一种方法, 将尖锐蓝色图像配对的任意数据集的模糊操作器编码为模糊的内核空间。 假设编码内核空间足够接近模糊操作器, 我们建议对盲人图像分光进行交替优化算法。 它与编码空间内一个内核的无形模糊操作器相近, 并搜索相应的锐利图像。 与最近的深层学习方法不同, 我们的系统可以处理隐蔽的模糊内核, 同时避免使用古典方法中常见的模糊操作器上复杂的手工前科。 由于该方法的设计, 编码内核空间完全可以区分, 因此很容易在深神经网络模型中被采用。 此外, 我们的方法可以通过将现有的模糊操作器从给定数据集转移到一个新的域来进行模糊合成。 最后, 我们提供实验结果, 以证实拟议方法的有效性 。