In this paper I will present a novel way of combining proof net proof search with neural networks. It contrasts with the 'standard' approach which has been applied to proof search in type-logical grammars in various different forms. In the standard approach, we first transform words to formulas (supertagging) then match atomic formulas to obtain a proof. I will introduce an alternative way to split the task into two: first, we generate the graph structure in a way which guarantees it corresponds to a lambda-term, then we obtain the detailed structure using vertex labelling. Vertex labelling is a well-studied task in graph neural networks, and different ways of implementing graph generation using neural networks will be explored.
翻译:在本文中,我将介绍一种将证据净证据搜索与神经网络相结合的新方式。它与不同形式的类型语法搜索证据使用的“标准”方法形成对比。在标准方法中,我们首先将单词转换成公式(suittagging),然后将原子公式匹配以获得证据。我将引入一种将任务分成二的替代方法:首先,我们生成图表结构的方式保证它与羊绒期相对应,然后我们用顶点标签获得详细的结构。在图形神经网络中,Vertex标签是一项研究周全的任务,将探索使用神经网络进行图形生成的不同方法。