We take a random matrix theory approach to random sketching and show an asymptotic first-order equivalence of the regularized sketched pseudoinverse of a positive semidefinite matrix to a certain evaluation of the resolvent of the same matrix. We focus on real-valued regularization and extend previous results on an asymptotic equivalence of random matrices to the real setting, providing a precise characterization of the equivalence even under negative regularization, including a precise characterization of the smallest nonzero eigenvalue of the sketched matrix, which may be of independent interest. We then further characterize the second-order equivalence of the sketched pseudoinverse. Lastly, we propose a conjecture that these results generalize to asymptotically free sketching matrices, obtaining the resulting equivalence for orthogonal sketching matrices and comparing our results to several common sketches used in practice.
翻译:我们采用随机矩阵理论方法随机草图绘制草图,并显示正正半无限制矩阵成像伪反正伪对正正半无限制矩阵进行某种评价的无症状第一阶等值。我们注重实际估价的正规化,并将以前关于随机矩阵的无症状等同结果扩大到真实环境,提供即使在负常化情况下对等的精确特征描述,包括对草图矩阵最小的非零乙基值的精确定性,这可能具有独立的兴趣。然后我们进一步描述草图伪反正的二阶等等。最后,我们提出一个假设,即这些结果概括为无症状自由的草图矩阵,获得结果的正形草图矩阵等同,并将我们的结果与实践中使用的一些通用草图作比较。