Additive models and generalized additive models are effective semiparametric tools for multidimensional data. In this article we propose an online smoothing backfitting method for generalized additive models with local polynomial smoothers. The main idea is to use a second order expansion to approximate the nonlinear integral equations to maximize the local quasilikelihood and store the coefficients as the sufficient statistics which can be updated in an online manner by a dynamic candidate bandwidth method. The updating procedure only depends on the stored sufficient statistics and the current data block. We derive the asymptotic normality as well as the relative efficiency lower bounds of the online estimates, which provides insight into the relationship between estimation accuracy and computational cost driven by the length of candidate bandwidth sequence. Simulations and real data examples are provided to validate our findings.


翻译:添加模型和通用添加模型是多维数据的有效半参数工具。在本篇文章中,我们建议对通用添加模型和本地多元光滑器采用在线整齐整整齐方法。主要想法是使用第二顺序扩展法,以近似非线性整体方程式,以尽量扩大当地准相似性,并将系数储存为足够的统计数据,通过动态候选带宽方法在网上更新。更新程序仅取决于储存的充足统计数据和当前数据块。我们从中得出在线估算的零碎正常性以及相对效率较低的界限,从而深入了解估算准确性和由候选带宽序列长度驱动的计算成本之间的关系。提供了模拟和真实数据实例,以验证我们的结论。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
ICML 2021论文收录
专知会员服务
123+阅读 · 2021年5月8日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
44+阅读 · 2020年9月11日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
203+阅读 · 2019年9月30日
已删除
将门创投
6+阅读 · 2019年1月11日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年2月19日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Question Generation by Transformers
Arxiv
5+阅读 · 2019年9月14日
Arxiv
4+阅读 · 2018年4月30日
Arxiv
5+阅读 · 2018年1月30日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年1月11日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员