The new type of ideal basis introduced herein constitutes a compromise between the Gr\"obner bases based on the Buchberger's algorithm and the characteristic sets based on the Wu's method. It reduces the complexity of the traditional Gr\"obner bases and subdues the notorious intermediate expression swell problem and intermediate coefficient swell problem to a substantial extent. The computation of an $S$-polynomial for the new bases requires at most $O(m\ln^2m\ln\ln m)$ word operations whereas $O(m^6\ln^2m)$ word operations are requisite in the Buchberger's algorithm. Here $m$ denotes the upper bound for the numbers of terms both in the leading coefficients and for the rest of the polynomials. The new bases are for zero-dimensional polynomial ideals and based on univariate pseudo-divisions. However in contrast to the pseudo-divisions in the Wu's method for the characteristic sets, the new bases retain the algebraic information of the original ideal and in particular, solve the ideal membership problem. In order to determine the authentic factors of the eliminant, we analyze the multipliers of the pseudo-divisions and develop an algorithm over principal quotient rings with zero divisors.
翻译:在此引入的新的理想基础类型构成基于Buchberger算法的Gr\“obner”基础与基于Wu方法的特质组之间的折中。 它降低了传统Gr\“obner基数的复杂度, 并大大压低了臭名昭著的中间表达器的复杂度, 问题和中间系数的膨胀问题。 计算新基数的美元- Polynomial值最多需要O( m\ ln2m) 美元字形操作, 而 $( mox6\ ln2m) 则需要在Buchberger算法中进行字形操作。 在这里, 美元表示传统Gr\ “ obner基数的复杂度, 并压制了臭名昭著的中间表达器的其余部分。 新的基数是零维度的多元性理想, 并且以无象形的伪视为基础。 但是, 与Wu的特性组方法的伪视相反, 新的基数组保留原始理想, 特别是, 解决了理想的正态的会籍变数组。