The reconfigurable intelligent surface (RIS) technology is a promising enabler for millimeter wave (mmWave) wireless communications, as it can potentially provide spectral efficiency comparable to the conventional massive multiple-input multiple-output (MIMO) but with significantly lower hardware complexity. In this paper, we focus on the estimation and projection of the uplink RIS-aided massive MIMO channel, which can be time-varying. We propose to let the user equipments (UE) transmit Zadoff-Chu (ZC) sequences and let the base station (BS) conduct maximum likelihood (ML) estimation of the uplink channel. The proposed scheme is computationally efficient: it uses ZC sequences to decouple the estimation of the frequency and time offsets; it uses the space-alternating generalized expectation-maximization (SAGE) method to reduce the high-dimensional problem due to the multipaths to multiple lower-dimensional ones per path. Owing to the estimation of the Doppler frequency offsets, the time-varying channel state can be projected, which can significantly lower the overhead of the pilots for channel estimation. The numerical simulations verify the effectiveness of the proposed scheme.
翻译:重新配置的智能表面(RIS)技术对于毫米波(mmWave)无线通信来说是一个很有希望的推进器,因为它有可能提供与常规的大型多投入多输出多输出多产出(MIMO)相似的光谱效率,但硬件复杂程度要低得多。在本文件中,我们侧重于估算和投影上连接的RIS辅助的大型MIMO频道,该频道可以是时间分流的。我们提议让用户设备(UE)传输Zadoff-Chu(ZC)序列,让基地台(BS)对上链接频道进行最大可能性的估测。拟议方案具有计算效率:它使用ZC序列来分解对频率和时间抵消的估计;它使用空间调节通用预期-高度化(SAGEG)方法来减少由于多方向而导致的高度问题。由于对多维维路径的偏移,因此可以估计多普勒频率的偏移,因此可以预测时间变化的频道状态,这可以大大降低频道估算效率。