Machine learning as a service (MLaaS) framework provides intelligent services or well-trained artificial intelligence (AI) models for local devices. However, in the process of model transmission and deployment, there are security issues, i.e. AI model leakage due to the unreliable transmission environments and illegal abuse at local devices without permission. Although existing works study the intellectual property (IP) protection of AI models, they mainly focus on the watermark-based and encryption-based methods and have the following problems: (i) The watermark-based methods only provide passive verification afterward rather than active protection. (ii) Encryption-based methods are low efficiency in computation and low security in key storage. (iii) The existing methods are not device-bind without the ability to avoid illegal abuse of AI models. To deal with these problems, we propose a device-bind and key-storageless hardware AI model IP protection mechanism. First, a physical unclonable function (PUF) and permute-diffusion encryption-based AI model protection framework is proposed, including the PUF-based secret key generation and the geometric-value transformation-based weights encryption. Second, we design a PUF-based key generation protocol, where delay-based Anderson PUF is adopted to generate the derive-bind secret key. Besides, convolutional coding and convolutional interleaving technologies are combined to improve the stability of PUF-based key generation and reconstruction. Third, a permute and diffusion-based intelligent model weights encryption/decryption method is proposed to achieve effective IP protection, where chaos theory is utilized to convert the PUF-based secret key to encryption/decryption keys. Finally, experimental evaluation demonstrates the effectiveness of the proposed intelligent model IP protection mechanism.


翻译:机器学习是一种服务(MLaaS)框架,它为本地设备提供了智能服务或训练有素的人工智能模型(AI),然而,在模型传输和部署过程中,存在安全问题,即由于不可靠的传输环境和当地设备非法滥用而导致的AI模型渗漏,尽管现有的工作研究对AI模型的知识产权保护,但主要侧重于基于水标记和加密的方法,并存在下列问题:(一) 以水标记为基础的方法只提供事后被动核查,而不是积极保护。 (二) 以加密为基础的方法在计算和关键存储安全方面效率低。 (三) 现有方法不是由于不可靠的传输环境以及当地设备非法滥用而导致的AI模型渗漏。为解决这些问题,我们提议采用一个基于水标记和基于加密的方法,主要基于加密的基于智能模型的保护框架。 (二) 基于加密方法的计算效率低,而基于关键存储和基于精度的IMF的变价变价工具的升级变价安全性。 (三) 我们设计了一个基于IM的模型的模型和基于核心版本的模型的模型的模型的系统, 将模型转换为核心生成的模型的模型的模型的系统生成, 。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年2月18日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
12+阅读 · 2021年8月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员