Machine learning as a service (MLaaS) framework provides intelligent services or well-trained artificial intelligence (AI) models for local devices. However, in the process of model transmission and deployment, there are security issues, i.e. AI model leakage due to the unreliable transmission environments and illegal abuse at local devices without permission. Although existing works study the intellectual property (IP) protection of AI models, they mainly focus on the watermark-based and encryption-based methods and have the following problems: (i) The watermark-based methods only provide passive verification afterward rather than active protection. (ii) Encryption-based methods are low efficiency in computation and low security in key storage. (iii) The existing methods are not device-bind without the ability to avoid illegal abuse of AI models. To deal with these problems, we propose a device-bind and key-storageless hardware AI model IP protection mechanism. First, a physical unclonable function (PUF) and permute-diffusion encryption-based AI model protection framework is proposed, including the PUF-based secret key generation and the geometric-value transformation-based weights encryption. Second, we design a PUF-based key generation protocol, where delay-based Anderson PUF is adopted to generate the derive-bind secret key. Besides, convolutional coding and convolutional interleaving technologies are combined to improve the stability of PUF-based key generation and reconstruction. Third, a permute and diffusion-based intelligent model weights encryption/decryption method is proposed to achieve effective IP protection, where chaos theory is utilized to convert the PUF-based secret key to encryption/decryption keys. Finally, experimental evaluation demonstrates the effectiveness of the proposed intelligent model IP protection mechanism.
翻译:机器学习是一种服务(MLaaS)框架,它为本地设备提供了智能服务或训练有素的人工智能模型(AI),然而,在模型传输和部署过程中,存在安全问题,即由于不可靠的传输环境和当地设备非法滥用而导致的AI模型渗漏,尽管现有的工作研究对AI模型的知识产权保护,但主要侧重于基于水标记和加密的方法,并存在下列问题:(一) 以水标记为基础的方法只提供事后被动核查,而不是积极保护。 (二) 以加密为基础的方法在计算和关键存储安全方面效率低。 (三) 现有方法不是由于不可靠的传输环境以及当地设备非法滥用而导致的AI模型渗漏。为解决这些问题,我们提议采用一个基于水标记和基于加密的方法,主要基于加密的基于智能模型的保护框架。 (二) 基于加密方法的计算效率低,而基于关键存储和基于精度的IMF的变价变价工具的升级变价安全性。 (三) 我们设计了一个基于IM的模型的模型和基于核心版本的模型的模型的模型的系统, 将模型转换为核心生成的模型的模型的模型的系统生成, 。