Wake word detection exists in most intelligent homes and portable devices. It offers these devices the ability to "wake up" when summoned at a low cost of power and computing. This paper focuses on understanding alignment's role in developing a wake-word system that answers a generic phrase. We discuss three approaches. The first is alignment-based, where the model is trained with frame-wise cross-entropy. The second is alignment-free, where the model is trained with CTC. The third, proposed by us, is a hybrid solution in which the model is trained with a small set of aligned data and then tuned with a sizeable unaligned dataset. We compare the three approaches and evaluate the impact of the different aligned-to-unaligned ratios for hybrid training. Our results show that the alignment-free system performs better alignment-based for the target operating point, and with a small fraction of the data (20%), we can train a model that complies with our initial constraints.
翻译:在大多数智能家庭和便携式设备中都存在警醒字检测。 它为这些设备提供了在以低电费和计算成本被召回时“ 醒醒” 的能力。 本文侧重于理解校醒在开发一个通用词组中的角色。 我们讨论了三种方法。 首先是基于校醒的系统, 模型在其中接受过框架- 跨渗透性的培训。 第二个是无校醒字检测, 模型在其中接受过CTC的培训。 第三个是由我们提出的, 是混合解决方案, 模型经过一组小的校对数据培训, 然后与一个相当的不匹配数据集调适。 我们比较了三种方法, 评估了混合培训的不同对齐对齐比的影响。 我们的结果显示, 无校正系统在目标操作点上运行了更好的校正基础, 并且只有一小部分数据( 20% ), 我们可以培训一个符合我们最初限制的模型。